3.1.6 \(\int \frac {d+e x^4}{d^2+f x^4+e^2 x^8} \, dx\) [6]

Optimal. Leaf size=791 \[ -\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}-2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}-\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}-2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}+2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}+2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (\sqrt {d}-\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\log \left (\sqrt {d}+\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (\sqrt {d}-\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\log \left (\sqrt {d}+\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}} \]

[Out]

-1/4*arctan((-2*x*e^(1/2)+(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2))^(1/2))/(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2)
)/d^(1/2)/(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2)+1/4*arctan((2*x*e^(1/2)+(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2)
)^(1/2))/(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2)-1/8*ln(d
^(1/2)+x^2*e^(1/2)-x*(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1
/2)+1/8*ln(d^(1/2)+x^2*e^(1/2)+x*(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*e^(1/2)-(2*d*e-
f)^(1/2))^(1/2)-1/4*arctan((-2*x*e^(1/2)+(2*d^(1/2)*e^(1/2)-(2*d*e-f)^(1/2))^(1/2))/(2*d^(1/2)*e^(1/2)+(2*d*e-
f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2))^(1/2)+1/4*arctan((2*x*e^(1/2)+(2*d^(1/2)*e^(1/2)-
(2*d*e-f)^(1/2))^(1/2))/(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2))
^(1/2)-1/8*ln(d^(1/2)+x^2*e^(1/2)-x*(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*e^(1/2)+(2*d
*e-f)^(1/2))^(1/2)+1/8*ln(d^(1/2)+x^2*e^(1/2)+x*(2*d^(1/2)*e^(1/2)+(2*d*e-f)^(1/2))^(1/2))/d^(1/2)/(2*d^(1/2)*
e^(1/2)+(2*d*e-f)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.56, antiderivative size = 791, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {1433, 1108, 648, 632, 210, 642} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}-2 \sqrt {e} x}{\sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}}\right )}{4 \sqrt {d} \sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}}-\frac {\text {ArcTan}\left (\frac {\sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}-2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\text {ArcTan}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}+2 \sqrt {e} x}{\sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}}\right )}{4 \sqrt {d} \sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}}+\frac {\text {ArcTan}\left (\frac {\sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}+2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (-x \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}+\sqrt {d}+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\log \left (x \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}+\sqrt {d}+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (-x \sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}+\sqrt {d}+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}}+\frac {\log \left (x \sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}+\sqrt {d}+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {\sqrt {2 d e-f}+2 \sqrt {d} \sqrt {e}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^4)/(d^2 + f*x^4 + e^2*x^8),x]

[Out]

-1/4*ArcTan[(Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]] - 2*Sqrt[e]*x)/Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]
]]/(Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]]) - ArcTan[(Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]] - 2
*Sqrt[e]*x)/Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]]/(4*Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]) +
 ArcTan[(Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]] + 2*Sqrt[e]*x)/Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]]]/(
4*Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]]) + ArcTan[(Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]] + 2*S
qrt[e]*x)/Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]]/(4*Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]) - L
og[Sqrt[d] - Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]*x + Sqrt[e]*x^2]/(8*Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] - Sq
rt[2*d*e - f]]) + Log[Sqrt[d] + Sqrt[2*Sqrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]*x + Sqrt[e]*x^2]/(8*Sqrt[d]*Sqrt[2*S
qrt[d]*Sqrt[e] - Sqrt[2*d*e - f]]) - Log[Sqrt[d] - Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]]*x + Sqrt[e]*x^2]/
(8*Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]]) + Log[Sqrt[d] + Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]
]*x + Sqrt[e]*x^2]/(8*Sqrt[d]*Sqrt[2*Sqrt[d]*Sqrt[e] + Sqrt[2*d*e - f]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1108

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 1433

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[2*(d/e) -
b/c, 2]}, Dist[e/(2*c), Int[1/Simp[d/e + q*x^(n/2) + x^n, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x^(n/2
) + x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2,
 0] && IGtQ[n/2, 0] && (GtQ[2*(d/e) - b/c, 0] || ( !LtQ[2*(d/e) - b/c, 0] && EqQ[d, e*Rt[a/c, 2]]))

Rubi steps

\begin {align*} \int \frac {d+e x^4}{d^2+f x^4+e^2 x^8} \, dx &=\frac {\int \frac {1}{\frac {d}{e}-\frac {\sqrt {2 d e-f} x^2}{e}+x^4} \, dx}{2 e}+\frac {\int \frac {1}{\frac {d}{e}+\frac {\sqrt {2 d e-f} x^2}{e}+x^4} \, dx}{2 e}\\ &=\frac {\int \frac {\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}{\sqrt {e}}-x}{\frac {\sqrt {d}}{\sqrt {e}}-\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\int \frac {\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}{\sqrt {e}}+x}{\frac {\sqrt {d}}{\sqrt {e}}+\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\int \frac {\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}{\sqrt {e}}-x}{\frac {\sqrt {d}}{\sqrt {e}}-\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\int \frac {\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}{\sqrt {e}}+x}{\frac {\sqrt {d}}{\sqrt {e}}+\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\\ &=\frac {\int \frac {1}{\frac {\sqrt {d}}{\sqrt {e}}-\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {e}}+\frac {\int \frac {1}{\frac {\sqrt {d}}{\sqrt {e}}+\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {e}}+\frac {\int \frac {1}{\frac {\sqrt {d}}{\sqrt {e}}-\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {e}}+\frac {\int \frac {1}{\frac {\sqrt {d}}{\sqrt {e}}+\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {e}}-\frac {\int \frac {-\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}{\sqrt {e}}+2 x}{\frac {\sqrt {d}}{\sqrt {e}}-\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\int \frac {\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}{\sqrt {e}}+2 x}{\frac {\sqrt {d}}{\sqrt {e}}+\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\int \frac {-\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}{\sqrt {e}}+2 x}{\frac {\sqrt {d}}{\sqrt {e}}-\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\int \frac {\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}{\sqrt {e}}+2 x}{\frac {\sqrt {d}}{\sqrt {e}}+\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x}{\sqrt {e}}+x^2} \, dx}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\\ &=-\frac {\log \left (\sqrt {d}-\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\log \left (\sqrt {d}+\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (\sqrt {d}-\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\log \left (\sqrt {d}+\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}{e}-x^2} \, dx,x,-\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}{\sqrt {e}}+2 x\right )}{4 \sqrt {d} \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}{e}-x^2} \, dx,x,\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}{\sqrt {e}}+2 x\right )}{4 \sqrt {d} \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}{e}-x^2} \, dx,x,-\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}{\sqrt {e}}+2 x\right )}{4 \sqrt {d} \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}{e}-x^2} \, dx,x,\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}{\sqrt {e}}+2 x\right )}{4 \sqrt {d} \sqrt {e}}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}-2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}-\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}-2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}+2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\tan ^{-1}\left (\frac {\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}+2 \sqrt {e} x}{\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}\right )}{4 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (\sqrt {d}-\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}+\frac {\log \left (\sqrt {d}+\sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}-\sqrt {2 d e-f}}}-\frac {\log \left (\sqrt {d}-\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}+\frac {\log \left (\sqrt {d}+\sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}} x+\sqrt {e} x^2\right )}{8 \sqrt {d} \sqrt {2 \sqrt {d} \sqrt {e}+\sqrt {2 d e-f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.02, size = 67, normalized size = 0.08 \begin {gather*} \frac {1}{4} \text {RootSum}\left [d^2+f \text {$\#$1}^4+e^2 \text {$\#$1}^8\&,\frac {d \log (x-\text {$\#$1})+e \log (x-\text {$\#$1}) \text {$\#$1}^4}{f \text {$\#$1}^3+2 e^2 \text {$\#$1}^7}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^4)/(d^2 + f*x^4 + e^2*x^8),x]

[Out]

RootSum[d^2 + f*#1^4 + e^2*#1^8 & , (d*Log[x - #1] + e*Log[x - #1]*#1^4)/(f*#1^3 + 2*e^2*#1^7) & ]/4

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.08, size = 53, normalized size = 0.07

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (e^{2} \textit {\_Z}^{8}+f \,\textit {\_Z}^{4}+d^{2}\right )}{\sum }\frac {\left (\textit {\_R}^{4} e +d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} e^{2}+\textit {\_R}^{3} f}\right )}{4}\) \(53\)
risch \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (e^{2} \textit {\_Z}^{8}+f \,\textit {\_Z}^{4}+d^{2}\right )}{\sum }\frac {\left (\textit {\_R}^{4} e +d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} e^{2}+\textit {\_R}^{3} f}\right )}{4}\) \(53\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^4+d)/(e^2*x^8+f*x^4+d^2),x,method=_RETURNVERBOSE)

[Out]

1/4*sum((_R^4*e+d)/(2*_R^7*e^2+_R^3*f)*ln(x-_R),_R=RootOf(_Z^8*e^2+_Z^4*f+d^2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/(e^2*x^8+f*x^4+d^2),x, algorithm="maxima")

[Out]

integrate((x^4*e + d)/(x^8*e^2 + f*x^4 + d^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 3072 vs. \(2 (573) = 1146\).
time = 0.46, size = 3072, normalized size = 3.88 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/(e^2*x^8+f*x^4+d^2),x, algorithm="fricas")

[Out]

-sqrt(sqrt(1/2)*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f
^2*e + d^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*arctan(-1/2*(sqrt(1/2)*(4*d^2*e^2 + 4*d*f*e + f^2 -
(8*d^5*e^3 + 12*d^4*f*e^2 + 6*d^3*f^2*e + d^2*f^3)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e +
 d^4*f^3)))*sqrt(x^2*e^2 + 1/2*sqrt(1/2)*(2*d*f*e + f^2 - (8*d^5*e^3 + 12*d^4*f*e^2 + 6*d^3*f^2*e + d^2*f^3)*s
qrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)))*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)
*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2))
)*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3
)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)) - sqrt(1/2)*(4*d^2*x*e^3 + 4*d*f*x*e^2 + f^2*x*e - (8*d^5*x*e^4 + 1
2*d^4*f*x*e^3 + 6*d^3*f^2*x*e^2 + d^2*f^3*x*e)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4
*f^3)))*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d
^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*sqrt(sqrt(1/2)*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt
(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*e^(
-2)) + sqrt(sqrt(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*
d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*arctan(1/2*(sqrt(1/2)*(4*d^2*e^2 + 4*d*f*e + f^
2 + (8*d^5*e^3 + 12*d^4*f*e^2 + 6*d^3*f^2*e + d^2*f^3)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2
*e + d^4*f^3)))*sqrt(x^2*e^2 + 1/2*sqrt(1/2)*(2*d*f*e + f^2 + (8*d^5*e^3 + 12*d^4*f*e^2 + 6*d^3*f^2*e + d^2*f^
3)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)))*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f
^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^
2)))*sqrt(sqrt(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^
5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*
d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)) - sqrt(1/
2)*(4*d^2*x*e^3 + 4*d*f*x*e^2 + f^2*x*e + (8*d^5*x*e^4 + 12*d^4*f*x*e^3 + 6*d^3*f^2*x*e^2 + d^2*f^3*x*e)*sqrt(
-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)))*sqrt(sqrt(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e
+ d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e +
 d^2*f^2)))*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e
+ d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*e^(-2)) + 1/4*sqrt(sqrt(1/2)*sqrt(-((4*d^4*e^2 + 4*d^3*f*
e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e
 + d^2*f^2)))*log(x*e + 1/2*(2*d*e - (4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f
*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)*sqrt(sqrt(1/2)*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/
(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))) - 1/4*sqrt(sqrt(
1/2)*sqrt(-((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*
f^3)) + f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*log(x*e - 1/2*(2*d*e - (4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-
(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)*sqrt(sqrt(1/2)*sqrt(-((4*d^4*e^2 + 4*d^3*
f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)/(4*d^4*e^2 + 4*d^3*f
*e + d^2*f^2)))) + 1/4*sqrt(sqrt(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 1
2*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*log(x*e + 1/2*(2*d*e + (4*d^4*e
^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) + f)*sqrt(sqrt
(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*
f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))) - 1/4*sqrt(sqrt(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*s
qrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)))*
log(x*e - 1/2*(2*d*e + (4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12*d^6*f*e^2 + 6*d^5*f
^2*e + d^4*f^3)) + f)*sqrt(sqrt(1/2)*sqrt(((4*d^4*e^2 + 4*d^3*f*e + d^2*f^2)*sqrt(-(2*d*e - f)/(8*d^7*e^3 + 12
*d^6*f*e^2 + 6*d^5*f^2*e + d^4*f^3)) - f)/(4*d^4*e^2 + 4*d^3*f*e + d^2*f^2))))

________________________________________________________________________________________

Sympy [A]
time = 6.61, size = 136, normalized size = 0.17 \begin {gather*} \operatorname {RootSum} {\left (t^{8} \cdot \left (1048576 d^{6} e^{4} + 2097152 d^{5} e^{3} f + 1572864 d^{4} e^{2} f^{2} + 524288 d^{3} e f^{3} + 65536 d^{2} f^{4}\right ) + t^{4} \cdot \left (1024 d^{2} e^{2} f + 1024 d e f^{2} + 256 f^{3}\right ) + e^{2}, \left ( t \mapsto t \log {\left (x + \frac {4096 t^{5} d^{4} e^{2} + 4096 t^{5} d^{3} e f + 1024 t^{5} d^{2} f^{2} + 4 t d e + 4 t f}{e} \right )} \right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**4+d)/(e**2*x**8+f*x**4+d**2),x)

[Out]

RootSum(_t**8*(1048576*d**6*e**4 + 2097152*d**5*e**3*f + 1572864*d**4*e**2*f**2 + 524288*d**3*e*f**3 + 65536*d
**2*f**4) + _t**4*(1024*d**2*e**2*f + 1024*d*e*f**2 + 256*f**3) + e**2, Lambda(_t, _t*log(x + (4096*_t**5*d**4
*e**2 + 4096*_t**5*d**3*e*f + 1024*_t**5*d**2*f**2 + 4*_t*d*e + 4*_t*f)/e)))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/(e^2*x^8+f*x^4+d^2),x, algorithm="giac")

[Out]

integrate((x^4*e + d)/(x^8*e^2 + f*x^4 + d^2), x)

________________________________________________________________________________________

Mupad [B]
time = 4.03, size = 2500, normalized size = 3.16 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^4)/(f*x^4 + d^2 + e^2*x^8),x)

[Out]

2*atan((((-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*
d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*((x*(65536*d^9*e^15 - 32768*d^8*e^14*f + 1024*d^2*e^8*f^7 -
 2048*d^3*e^9*f^6 - 10240*d^4*e^10*f^5 + 20480*d^5*e^11*f^4 + 32768*d^6*e^12*f^3 - 65536*d^7*e^13*f^2) - (-(f^
3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32
*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*(262144*d^10*e^15 - 262144*d^9*e^14*f + 4096*d^3*e^8*f^7 - 4096*d^4*e^9*f
^6 - 49152*d^5*e^10*f^5 + 49152*d^6*e^11*f^4 + 196608*d^7*e^12*f^3 - 196608*d^8*e^13*f^2)*1i)*(-(f^3 + ((f - 2
*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f
+ 24*d^4*e^2*f^2)))^(3/4)*1i - 256*d^7*e^14 + 256*d^6*e^13*f + 16*d^3*e^10*f^4 - 64*d^4*e^11*f^3)*1i + x*(32*d
^5*e^13*f - 4*d^2*e^10*f^4 + 24*d^3*e^11*f^3 - 48*d^4*e^12*f^2))*(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) +
4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4) + (
(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3
 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*((x*(65536*d^9*e^15 - 32768*d^8*e^14*f + 1024*d^2*e^8*f^7 - 2048*d^3
*e^9*f^6 - 10240*d^4*e^10*f^5 + 20480*d^5*e^11*f^4 + 32768*d^6*e^12*f^3 - 65536*d^7*e^13*f^2) + (-(f^3 + ((f -
 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*
f + 24*d^4*e^2*f^2)))^(1/4)*(262144*d^10*e^15 - 262144*d^9*e^14*f + 4096*d^3*e^8*f^7 - 4096*d^4*e^9*f^6 - 4915
2*d^5*e^10*f^5 + 49152*d^6*e^11*f^4 + 196608*d^7*e^12*f^3 - 196608*d^8*e^13*f^2)*1i)*(-(f^3 + ((f - 2*d*e)*(f
+ 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*
e^2*f^2)))^(3/4)*1i + 256*d^7*e^14 - 256*d^6*e^13*f - 16*d^3*e^10*f^4 + 64*d^4*e^11*f^3)*1i + x*(32*d^5*e^13*f
 - 4*d^2*e^10*f^4 + 24*d^3*e^11*f^3 - 48*d^4*e^12*f^2))*(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2
*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4))/(((-(f^3 +
((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5
*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*((x*(65536*d^9*e^15 - 32768*d^8*e^14*f + 1024*d^2*e^8*f^7 - 2048*d^3*e^9*f^6
- 10240*d^4*e^10*f^5 + 20480*d^5*e^11*f^4 + 32768*d^6*e^12*f^3 - 65536*d^7*e^13*f^2) - (-(f^3 + ((f - 2*d*e)*(
f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^
4*e^2*f^2)))^(1/4)*(262144*d^10*e^15 - 262144*d^9*e^14*f + 4096*d^3*e^8*f^7 - 4096*d^4*e^9*f^6 - 49152*d^5*e^1
0*f^5 + 49152*d^6*e^11*f^4 + 196608*d^7*e^12*f^3 - 196608*d^8*e^13*f^2)*1i)*(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^
5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2))
)^(3/4)*1i - 256*d^7*e^14 + 256*d^6*e^13*f + 16*d^3*e^10*f^4 - 64*d^4*e^11*f^3)*1i + x*(32*d^5*e^13*f - 4*d^2*
e^10*f^4 + 24*d^3*e^11*f^3 - 48*d^4*e^12*f^2))*(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*
e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*1i - ((-(f^3 + ((f -
2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f
 + 24*d^4*e^2*f^2)))^(1/4)*((x*(65536*d^9*e^15 - 32768*d^8*e^14*f + 1024*d^2*e^8*f^7 - 2048*d^3*e^9*f^6 - 1024
0*d^4*e^10*f^5 + 20480*d^5*e^11*f^4 + 32768*d^6*e^12*f^3 - 65536*d^7*e^13*f^2) + (-(f^3 + ((f - 2*d*e)*(f + 2*
d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*
f^2)))^(1/4)*(262144*d^10*e^15 - 262144*d^9*e^14*f + 4096*d^3*e^8*f^7 - 4096*d^4*e^9*f^6 - 49152*d^5*e^10*f^5
+ 49152*d^6*e^11*f^4 + 196608*d^7*e^12*f^3 - 196608*d^8*e^13*f^2)*1i)*(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/
2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(3/4
)*1i + 256*d^7*e^14 - 256*d^6*e^13*f - 16*d^3*e^10*f^4 + 64*d^4*e^11*f^3)*1i + x*(32*d^5*e^13*f - 4*d^2*e^10*f
^4 + 24*d^3*e^11*f^3 - 48*d^4*e^12*f^2))*(-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)
/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*1i))*(-(f^3 + ((f - 2*d*e)*
(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d
^4*e^2*f^2)))^(1/4) - atan((((-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^
6*e^4 + d^2*f^4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2)))^(1/4)*((x*(65536*d^9*e^15 - 32768*d^8*e^14*f
+ 1024*d^2*e^8*f^7 - 2048*d^3*e^9*f^6 - 10240*d^4*e^10*f^5 + 20480*d^5*e^11*f^4 + 32768*d^6*e^12*f^3 - 65536*d
^7*e^13*f^2) + (-(f^3 + ((f - 2*d*e)*(f + 2*d*e)^5)^(1/2) + 4*d^2*e^2*f + 4*d*e*f^2)/(512*(16*d^6*e^4 + d^2*f^
4 + 8*d^3*e*f^3 + 32*d^5*e^3*f + 24*d^4*e^2*f^2...

________________________________________________________________________________________